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ABSTRACT

Slalom chromatography (SC) is a chromatographic procedure for the

separation of polymers, which is based on a non equilibrium principle.

A novel equation was recently developed to model the retention variation

of linear double stranded DNA molecules with the mobile phase velocity

under SC. This paper analyzes the effect of mobile phase viscosity and
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temperature on the constants of this equation and confirms that these two

factors play a great role on the DNA fragment stretching.

Key Words: Chromatography; DNA; Slalom; Model; Viscosity;

Temperature.

INTRODUCTION

The study of methods to analyze the genomes of different biological

systems is being undertaken in laboratories worldwide. The first complete

sequence of a genome, a living organism, a bacterium called Haemophilus

influenza, was carried out in 1953. The main technique used to separate the

DNA fragments is electrophoresis. When used on agarose gel, for example, it

separates fragments of chromosomes cut by restriction enzymes. Capillary

electrophoresis uses techniques that are closer to biological conditions, are

faster, and give efficient resolution. Electrophoresis is a separation technique

based on the difference of migration speed of the DNA fragments under an

electric charge. The use of capillaries with a small internal diameter(<10 mm)

led to the use of high electric fields (<1000 V=cm). This technique was then

miniaturized and gave high resolution efficiency. With pulsed fields the

method can separate up to 40,000 base pairs.

As well as these electrophoresis separation techniques, there are those using

chromatography. The more usual modes are based on the affinity differences of

the DNA fragments between the stationary and mobile[1–8] phases. On column

chromatography, the stationary phase filling the column is a liquid impregnating

a support. In the case of ion exchange chromatography, the retention mechanism

for the DNA fragments is related to the electrostatic interactions between the

phosphate groups of DNA fragments and the stationary phase cationic groups. In

the case of hydrophobic-interaction chromatography, the retention of the DNA

fragment is linked to the intensity of the hydrophobic interactions that it

establishes with the stationary phase. Finally, with gel permeation chromato-

graphy, the separation criterion of the fragments is their size. The separation is

based on their ability to penetrate the pores of a gel forming the stationary phase.

At the present time, alternative non equilibrium chromatographic techniques

such as slalom chromatography (SC), are being investigated, to separate flexible

biological molecules. Recently, a novel empirical mathematical equation[9] was

developed to model DNA fragment retention with mobile phase velocity in SC.

In order to gain further insight into this mathematical model, the effect of mobile

phase viscosity and column temperature on some constants of this equation was

studied.
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EXPERIMENTAL

Apparatus

The HPLC system consisted of a Merck Hitachi pump L7100 (Nogent-

Sur-Marne, France), an Interchim Rheodyne injection model 7125 (Montluçon,

France) fitted with a 20 mL sample loop, and a Merck L4500 diode array

detector. A C1 Kromasil column (particle size: 5 mm column size:

150 mm� 4.6 mm) was supplied by Interchim. All the experiments were

carried out using a TM N� 701 Interchim column oven.

Reagents

Circular double-stranded DNA P3, P5 , . . . , P10 and l DNA (48.5 kbp) and

restriction enzyme BamHI, KpnI, HindIII and ApaI were supplied by New

England Biolabs (Gagny, France). Ethanol, EDTA, acetonitrile, and sodium

hydrogen phosphate, and sodium dihydrogen phosphate were purchased from

Prolabo (Paris, France). Water was obtained from an Elgastat option water

purification system (Odil, Talant, France) fitted with a reverse osmosis

cartridge.

Digestion of k DNA

Restriction enzymes were used for cleavage of the l DNA and plasmids

into linear DNA fragments of different sizes: 17.09 kbp, 23.13 kbp, 29.95 kbp,

38.42 kbp. Two micrograms of l DNA or circular DNA was treated with 3U of

restriction enzymes in 16 mL of the reaction mixture at 37�C for 3 h,

precipitated by ethanol, dissolved in 20 mL of water, and stored at �20�C

until used.

Chromatographic Conditions

The mobile phase consisted of a sodium phosphate buffer 0.01 M

pH¼ 6.8-EDTA=0.001 M-acetonitrile, 80=20 (v=v) mixture with different

concentrations of glycerol varying from 0 to 1 M. Hirabayashi and Kasai[20]

have previously shown that columns developed for reversed chromatography

(the column used in this study) are useful for SC. In order to eliminate a

possible hydrophobic interaction, which could interfere with the

hydrodynamic principle, these authors used an aqueous mobile phase contain-

ing a 5–20% organic modifier such as acetonitrile. It was found that the

hydrophobic interaction was negligible in such conditions. Thus, our experi-

ments were carried out with a larger proportion of acetonitrile in the mobile
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phase (20%). The column temperature varied from 5 to 55�C. Twenty

milligrams per liter of the DNA solutions were injected in triplicate. The

mobile phase flow-rate varied from 0.02 to 1.5 mL=min.

RESULTS AND DISCUSSION

DNA Conformation in Solution

A model of the Gaussian chain with a persistent chain length r is used

to describe the DNA conformation in solution.[11–13] The DNA is repre-

sented by Nk statistical chains with a length b or b., the Kuhn length is equal

to twice the persistence length of the molecule. The DNA molecule adopts

the random coil conformation. Its contour length is Lc¼ b0N0 where N0 is the

number of bases and b0 the distance between the bases. Neglecting the

excluded volume interactions, its gyration radius is given by the relationship

Rg¼ 1=3(r=Lc) {1� 3r=Lc þ 6r2=Lc
2
� 6r3=Lc

2 [1� exp(�Lc=r)]}. If the

contour length is longer than the persistence length (Lc� r), the polymer

is described by a random step of pitch b, the chain is Gaussian, and

Rg¼ Lc
1=2. If, however, Lc� r, the chain conformation is the measurement

of the contour distance on which there is still a direction correlation between

the units of the chain; it is linked to the free energy of the surround-

ing deformation of the chain. All these considerations show that DNA, in

certain well defined physical–chemical conditions, can adopt an elongated

conformation.

Theoretical Models Describing Non Equilibrium

DNA Chromatography

Non equilibrium chromatographic techniques, particularly SC, are cur-

rently used for the separation of DNA fragments with a length of between

15 kb and 50 kb.[14–28] Our laboratory has developed mathematical models to

try and elucidate the retention and separation mechanisms.[9,23,25,27,28] In these

models, the stationary phase filling the column is made up of silica particles

with a diameter dp, forming a network of three dimensional pores. The mean

pore diameter is l. The number of pores (or segments) occupied by the DNA

chain is p. The progression of the DNA fragments through this network will

obviously depend on the mean pore diameter, as well as the gyration radius of

the DNA molecule. As the DNA chain was aligned in the flow direction, it was

assumed to be a linear stretching of the DNA fragment in one pore. The

sequence of pores followed by the chain is called the tube with a total length,

pl. To model the DNA fragment retention inside the column, a parameter t[9]
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was introduced and defined by the equation t¼ t(v)=t1 , where t(v) is the

DNA fragment retention time at the v mobile phase velocity and t1 its

retention time when it is completely stretched. Recently, it was demonstrated

that t could be given by the equation:[9]

t ¼ cðe�kv þ kv � 1Þ þ �tt ð1Þ

where c was an empirical constant depending on some geometrical characte-

ristics of the DNA fragment. �tt was the t value at the lowest mobile phase

Figure 1. Curve t vs. F (mL=min), for the 48.5 kbp DNA fragment size, for two

different glycerol concentration in the mobile phase: (a) 0 M, (b) 0.1 M at T¼ 25�C.
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velocity (for this value, the stretching fraction of the DNA fragment ! 0).

k was the constant of the following equation:[9]

dp

dv
¼ kðp1 � pÞ ð2Þ

where p1 was the number of pores occupied by the DNA chain at its

stretching maximum. The value ln 2=k can also be defined as the value of the

mobile phase velocity for which the p1 value was divided by two. A first

series of experiments were carried out for which the column temperature was

equal to 25�C, the glycerol concentration c in the mobile phase varied from

Figure 2. Curve t vs. F (mL=min), for the 48.5 kbp DNA fragment size, for two

different temperatures: (a) 5�C, (b) 20�C; the glycerol concentration in the mobile

phase was nil.
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0 to 1 M, and the mobile phase flow-rate from 0.02 to 1.5 mL=min. A second

series of experiments were carried out for which the glycerol concentration in

the mobile phase was nil, the column temperature varied from 5 to 55�C, and

the mobile phase flow-rate from 0.02 to 1.5 mL=min.

All the experiments were repeated three times. For each DNA fragment,

the RSDs of the t values were less than 3% in most cases, indicating a high

reproducibility and good stability for the chromatographic system. With a non

linear regression procedure, which was used in earlier chromatographic

studies,[9,27] the data obtained in the two series of experiments were fitted to

Eq. (1). After the non linear regression procedure, the calculated c, k, and �tt
values, obtained for the two series of experiments and for each DNA fragment

were used to estimate the t values with the measured values. The correlation

between all the predicted and experimental t values exhibited slopes equal to

Figure 3. Curve k vs. c (M) for the 48.5 DNA fragment at T¼ 25�C.
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0.98 with r2> 0.97. Figures 1 and 2 showed the t dependence on v at two

glycerol concentrations, c, and two column temperatures (T) for the 48.5 kbp

DNA fragment. A similar variation was observed for the other c or T values

and DNA fragments. As explained previously,[9] the liquid velocity depen-

dence on t was a sigmoidal like curve. It has been demonstrated that the

glycerol effect on the DNA fragment retention in SC was a result of a change

in the mobile phase viscosity Z.[25] The dependence of the acetonitrile–water

mobile phase viscosity was estimated by the use of the empirical relationship

reported by Christ et al.[29]

Z ¼ Z25�C

298

T

� �6

Figure 4. Curve k vs. 1=T (K�1) for the 48.5 DNA fragment; the glycerol concentra-

tion in the mobile phase was nil.
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where Z25�C is the viscosity at 25�C. For a given DNA fragment, when Z; i.e. c

increased or T decreased, the hydrodynamic force generated by the mobile

phase and applied across the ends of the DNA chain increased. Therefore, the

number of pores occupied and, thus, the k constant, increased (Figs. 3 and 4).

The delaying factors

d ¼
dk

dc
or d0 ¼

dk

dð1=T Þ
I

increased as the DNA length increased (Figs. 5 and 6). These d and d0

variations can be explained by the fact that a greater stretching of the DNA

fragment was observed for large DNA fragments rather than small DNA

fragments. All these variations showed that in SC, the hydrodynamic force

Figure 5. Curve d ¼ dk=dc vs. DNA fragment size at T¼ 25�C.
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played a major role on the slalom chromatographic mode. In summary, this

paper confirmed, with the use of a novel mathematical model, that the

retention mechanism in SC is strongly dependent on the DNA stretching,

governed by the hydrodynamic force generated by the mobile phase.
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